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AbstractÐA quantum-chemical investigation shows that the reactions of the carbenoids LiCH2X 1-X, X�F, Cl, Br, I and OH, with ethene 3
to cyclopropane 41LiX pro®t from a weakening of the C±X bonds by the C±Li bonds in the carbenoids 1-X and in the complexes [1-X´3].
The C±F bond is more affected than the C±I bond. Since in the transition states [1-X´3]³ LiHal is strongly decomplexed, the cleavage of the
C±Hal bonds is essentially compensated by the formation of the Li±Hal bonds, which leads to almost equal transition state energies for the
reactions of 1-Hal with 3. The higher energy for the reaction of 1-OH with 3 results from the high C±OH bond energy. In the reactions of
XZnCH2X 2-X with 3 to 4, the C±ZnX bonds cause almost no elongation of the C±X bonds. This leads to higher activation energies, which is
in agreement with experimental results. Furthermore, 2-F is calculated to have a much higher transition state energy than 2-I, the normally
used Simmons±Smith reagents, again in excellent agreement with the experiment. The latter result is due to the much higher C±F
(110.9 kcal/mol) than C±I bond energy (58.2 kcal/mol). q 2000 Elsevier Science Ltd. All rights reserved.

Introduction

Carbenoids LiCH2X 1-X, X�Hal, OR,1±10 and XZnCH2X
2-X, in general X�I (`Simmons±Smith reagents'),11±14

belong to the synthetically most useful reactive inter-
mediates. As expected for `carbanions', LiCH2X 1-X react
as nucleophiles. Most interestingly, however, is the electro-
philic behavior of these species: LiCH2X 1-X insert into
C±H and C±C bonds; they react with RLi to give
RCH2Li1LiX, and with LiCH2X 1-X to form H2CvCH2

312 LiX (`eliminative dimerization'). Furthermore,
LiCH2X 1-X and XZnCH2X 2-X add to ole®nic double
bonds as, e.g. of ethene 3 to cyclopropanes 4, see
Scheme 1.15

From experimental experience it is evident that LiCH2X
1-X are by far `stronger carbenoids' than XZnCH2X 2-X:
the reaction of 1-X with ole®ns like 3 to 4 is fast even at
2788C,1±10 while 2-X undergo the same reaction only at
room temperature or above.11±14 What is the reason for the
different reactivity of Li/X and XZn/X carbenoids 1-X and
2-X?

Li/X carbenoids 1-X, especially with X�F, Cl and OH (OH
as a model for OR), have been analyzed thoroughly by
various quantumchemical methods,16±34 and in recent
years the Simmons±Smith reagents 2-X were also studied
by such means.35±39 The difference between lithium (1-X)
and zinc carbenoids 2-X can be traced back to an analysis of
the carbon±metal and the carbon±X bond as, e.g. in the case
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Scheme 2. The lithiated (zincated) oxazoles 5 (6) and the products of the a-
elimination 5 0 and 6 0, respectively.

Scheme 1. Cyclopropanation of ethene 3 with carbenoids MCH2X.
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of the 2-lithiated (zincated) oxazoles 5 and 6, respectively,
see Scheme 2.37

Oxazole 5 undergoes facile a-elimination to give 5 0, while 6
does not form 6 0. According to the calculations, the high
s-character of the C-orbital of the C±Li bond in 5 (sp1.0) is
accompanied by a high p-character of the C-orbital in the
carbenoid C±O bond (sp3.3). In contrast, in the more cova-
lent C±ZnCl bond in 6 the C-orbital is sp2.2-hybridized
which leads to a hybridization of the C-orbital in the C±O
bond of sp2.4. Thus, the weaker C±O bond in 5 is more easily
broken (especially if a lithium-assisted ionization is
involved) than the C±O bond in 6; 5 0 is also 15.2 kcal/
mol more stable than 5, while 6 0 is 11.8 kcal/mol less stable
than 6. As will be shown in this work similar differences of
the hybridizations of the C±Li(ZnX) and C±X bonds are
characteristic for the behaviour of the carbenoids LiCH2X
1-X and XZnCH2X 2-X.

Although the number of theoretical investigations of 1-X
and 2-X has increased lately there is only one work which
allows a direct comparison of species 1-X and 2-X.
Nakamura et al.39 recently studied the transition states of
the reactions of 1-Cl and 2-Cl with ethene 3 to give cyclo-
propane 4. In agreement with the experimental results the
energy of the transition state of the reaction of 3 with 1-Cl
amounts only to 3.8 kcal/mol, while it is 17.3 kcal/mol in
the case of 2-Cl. The calculations are in accord with the
facile C±O bond cleavage in 5 as compared to 6, see
Scheme 2. The in¯uence of the metal M in carbenoids
M±CH2±X is thus well documented, at least for M�Li,
1-X, and M�ZnCl, 2-X.

In the following we are concerned with the question about
the in¯uence of the leaving group X, X�F, Cl, Br, I and OH
(as a model for OR), on structure and reactivity in the
carbenoid series 1-X and 2-X. With regard to 1-X, it is
known experimentally that Li/Hal carbenoids are much
more reactive than Li/OR carbenoids.26,27,40,41 Investiga-
tions comparing the reactivities of the different Li/Hal
carbenoids 1-Hal are not known. Furthermore, the most
widely used Li/Hal carbenoids 1-Hal are LiCH2Br 1-Br
and LiCH2I 1-I, which have not been studied theoretically.
An in¯uence of X on zinc carbenoids 2-X, although not
studied theoretically, was found by Wittig:42 reaction of
(PhCO2CH2)2Zn with ZnF2 (ZnCl2; ZnBr2; ZnI2) and cyclo-
hexene led under comparable conditions to norcarane in 0
(12; 36; 91)% yields.

Results and Discussion

Carbenoids LiCH2X 1-X, X�F, Cl, Br, I, OH

In Table 1 are summarized signi®cant data of the structures
of the most stable isomers of the carbenoids 1-X, X�F, Cl,
Br, I and OH, in which the C±X bond is bridged by
lithium.43±52

As one can see from Table 1, the C±Li bonds are in the
range of 192.4±196.7 pm. This corresponds to minimal
changes if compared with the C±Li bond length in H3C±
Li (a positive change [%] means an elongation, a negative
change [%] a shortening with regard to the bond of compari-
son). Not unexpectedly, the hybridizations of the C-orbitals
in the C±Li bonds show strong s-character. As a conse-
quence, the C-orbitals of the C±X bonds have high
p-character. This goes along with the C±X bonds in 1-X
being strongly elongated as compared to those in CH3±X:
in 1-F the C±F bond (155.8 pm) is 17.1 pm longer than in
CH3±F (138.7 pm) which corresponds to an elongation of
12.3%. In the case of 1-Cl the elongation of the C±Cl bond
amounts to 12.5 pm (177.5!190.0 pm), corresponding to
7.0%. Smaller elongations are found for 1-Br
(193.6!206.6 pm, D�13.0 pm, 6.7%) and 1-I (214.7!
226.6 pm, D�11.9 pm, 5.5%). In 1-OH the situation is
comparable to that in 1-Cl: C±OH elongates from 142.1
to 152.2 pm, which corresponds to D�10.1 pm and 7.1%.
Concerning the Li±X bonds in the Li-bridged 1-X, the
elongations, as compared to the bond lengths in the salts
LiX, are between 8.2 and 11.9%, see Table 1.

The data of Table 1, especially those of the C±X bond
elongations, which are con®rmed by X-ray crystallography
at least for the cases 1-Cl53±55 and 1-OR,26,27,40,56±59 might
indicate that 1-F is by far the `strongest carbenoid',
followed by 1-Cl and 1-OH (which are essentially equal),
1-Br, and 1-I, the `weakest carbenoid'. Interestingly, 1-I is
one of the most widely used carbenoids of the LiCH2X type,
and 1-Cl is clearly much more reactive than a-lithiated
ethers of the type LiCH2OR.26,27,40,41 It thus turns out that
a comparison of the structural properties of the carbenoids
LiCH2X 1-X with those of CH3±X is not in agreement with a
scale of the `carbenoid character' resulting from a compar-
ison of the reactivities of 1-X with 3.

Therefore we calculated the transition state structures and
energies of the reactions of LiCH2X 1-X, X�F, Cl, Br, I and

Table 1. Calculated bond lengths [pm] and bond elongation [%] in the carbenoids LiCH2X 1-X as compared to the bond lengths of CH3±Li, CH3±X and Li±X,
respectively

C±Li C±X Li±X

1-X r [pm] Elong.a [%] Hybr. C1 r [pm] Elong.b [%] Hybr. C1 r [pm] Elong.c [%]

1-F 192.4 22.9 sp1.8 155.8 12.3 sp8.5 178.5 11.9
1-Cl 194.7 21.8 sp1.9 190.0 7.0 sp9.3 219.7 8.2
1-Br 196.7 20.8 sp1.8 206.6 6.7 sp10.2 238.1 9.0
1-I 196.6 20.8 sp1.7 226.6 5.5 sp11.8 261.9 8.7
1-OH 194.2 22.0 sp2.6 152.2 7.1 sp5.1 177.4 10.7

a CH3±Li 198.2 pm.
b CH3F 138.7 pm, CH3Cl 177.5 pm, CH3Br 193.6 pm, CH3I 214.7 pm, CH3OH 142.1 pm.
c LiF 159.5 pm, LiCl 203.1 pm, LiBr 218.4 pm, LiI 241.0 pm, LiOH 160.2 pm.
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OH, with ethene 3 to give cyclopropane 4 and LiX, see
Scheme 1. It was of interest to see whether the results are
in agreement with the experimentally observed differences
between the carbenoids Li/Hal and Li/OR. Furthermore,
how is the reactivity scale within the Li/Hal series?

A reaction pro®le of the cyclopropanation of ethene 3 with
LiCH2F 1-F was ®rst disclosed by Houk and Schleyer et al.
(HF/3-21G).60 The reactions investigated in our work
similarly lead from the starting materials 1-X1CH2vCH2

3 (1-X13) ®rst to the complexes LiCH2X´CH2vCH2

[1-X], see Scheme 3. Via the transition states
[LiCH2X´CH2vCH2]

³ [1-X´3]³ and the cyclopropane
product complexes C3H6´LiX [4´LiX], the products C3H6 4
and LiX are reached.

The relative energies of the complexes [1-X´3], transition
states [1-X´3]³, product complexes [4´LiX] and products
41LiX, as compared to the starting materials 1-X13, are
summarized in Table 2.

Two results are of interest: (1) the transition state energy of
the model reaction 1-OH13 is roughly 2.5 times higher
(19.2 kcal/mol) than the values of the carbenoids 1-Hal,
Hal�F, Cl, Br, I; (2) the transition state energies of the

reactions of the different carbenoids 1-Hal are rather
similar. The low tendency of the carbenoids 1-OR for cyclo-
propanation reactions is well documented. SchoÈllkopf et
al.,41 e.g. found in the reactions of 7 with the ole®ns 8 and
9, respectively, the cyclopropanes 10 and 11 only in very
low yields, see Scheme 4.

Cyclopropanation reactions with 1-Hal, on the other hand,
are rather fast even at low temperatures, as mentioned
earlier. The similar transition state energies of the reactions
of the different 1-Hal with 3 lead to the conclusion that the
`carbenoid character' of all four carbenoids 1-Hal is essen-
tially the same, at least in the cyclopropanation reaction.
This is an interesting result considering the different C±X
bond energies in H3C±X (C±F 110.9 kcal/mol; C±Cl
81.0 kcal/mol; C±Br 70.2 kcal/mol; C±I 58.2 kcal/mol).43±52

Therefore it is necessary to look in more detail into the
structures of the transition states [1-Hal´3]³. In Table 3 are
listed C±Li, C±X and Li±X bond lengths [pm] as well as
differences in bond lengths [%] in the transition states
[1-X´3]³ as compared to those in CH3±Li, CH3±X and
Li±X.

The C±Li bonds are now slightly longer than in H3C±Li.
The hybridizations in the C-orbitals of the C±Li bonds are
between sp1.2 and sp1.4. Signi®cant differences to the

Scheme 3. Reaction pro®le of the cyclopropanation of ethene 3 with the carbenoids LiCH2X 1-X to give cyclopropane 41LiX.

Table 2. Relative energies (values in parentheses include ZPE energy
correction) [kcal/mol] of the complexes [1-X´3], transition states
[1-X´3]³, product complexes [4´LiX], and products 41LiX, as compared
to the starting materials 1-X13a

F Cl Br I OH

[1-X´3] 210.4 211.1 211.3 211.7 29.8
[1-X´3]³a 7.4 6.9 6.5 6.1 19.2

(10.1) (7.9) (7.7) (7.4) (19.8)
[4´LiX] 278.0 275.9 275.1 274.1 260.1
41LiX 266.5 263.0 261.6 260.0 249.6

(262.9) (259.0) (257.4) (255.6) (247.2)

a MP2 calculations with two different all electron basis sets for the atoms
F and Cl (6-31111G(d,p)//6-31111G(d,p) and cc-pVTZ//cc-pVDZ,
respectively) yield lower transition state energies for [1-F´3]³ (7.4 and
5.0 kcal/mol) than for [1-Cl´3]³ (8.1 and 6.2 kcal/mol). Scheme 4. Cyclopropanation of ole®ns with the Li/OR carbenoid 7.
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situation in the carbenoids 1-X, however, are not observed
(see Table 1). This is completely different in the case of the
C±Hal bonds: they are strongly elongated with C±F show-
ing the largest elongation and C±I the smallest; C±OH is
also rather long. Thus, C±F is elongated from 138.7 to
192.8 pm (39.0%), and C±I from 214.7 pm to 265.9 pm
(23.8%); C±OH is 36.3% longer than in CH3±OH. The
Li±X bond lengths are shorter than in 1-X. They are only
slightly longer than in the salts LiX: Li±F (5.3%), Li±Cl
(4.6%), LiBr (4.3%), LiI (4.1%), Li±OH (4.6%). With
regard to the very long C1±C2 (204.0±227.8 pm) and
C1±C3 bonds (243.4±253.4 pm) in the transition states
[1-X´3]³, see Scheme 3 and AppendixÐthe C±C bonds in
cyclopropane are only 150.8 pm longÐthe transition states
are best described as a carbenoid LiCH2X 1-X with strongly
decomplexed LiX, approaching CH2vCH2 3. It thus seems
that the rather different energies required for the cleavage of
the C±X bonds in the transition states [1-X´3]³ (which are
already elongated in the carbenoids 1-X, see Table 1) are
essentially compensated by the formation of the Li±X
bonds. A calculation of the bond (dissociation) energies as
shown in Scheme 5 leads to the results summarized in
Table 4.

It can be seen from Table 4 that the dissociation of LiCH2X
1-X into LiCH2

1 and X2 Eq. (1) requires a much higher
energy in the case of 1-F (194.8 kcal/mol) than in the case
of 1-I (156.3 kcal/mol). 1-OH is even higher than 1-F
(217.9 kcal/mol). The formation of a Li±X bond between
Li1 and X2 Eq. (2), however, is much more favorable with

X�F (2183.1 kcal/mol) than with X�I (2137.3 kcal/mol).
The Li±OH bond energy (2189.2 kcal/mol) does not much
exceed the Li±F bond energy. Eq. (3) LiCH2X1Li1!Li-
CH2

11LiX summarizes the energies of Eqs. (1) and (2). One
notices ®rst that in the case of 1-OH the energy is clearly
higher (28.7 kcal/mol) than in the cases of the Li/Hal
carbenoids 1-F, 1-Cl, 1-Br and 1-I, in agreement with the
higher energy of the transition state of the reaction of 1-OH
with 3, see Table 2. Secondly, the difference within the
halide series 1-Hal amounts only to 7.3 kcal/mol, which is
in agreement with the similar transition state energies for the
reactions of the carbenoids 1-Hal with 3, see Table 2. It is
interesting to mention that in the transition states [1-F´3]³

and [1-OH´3]³ in which cases strong C±X bonds have to be
cleaved, the C1±C2 and C1±C3 bonds are somewhat
shorter than in the transition states [1-Cl´3]³, [1-Br´3]³ and
[1-I´3]³, see Appendix. In conclusion, according to the
calculations outlined above, there is no special halide effect
in the reactions of the carbenoids 1-Hal with CH2vCH2 3
because the energy of the cleavage of the C±Hal bonds in
the transition states is essentially compensated by the energy
of the formation of the Li±Hal bonds. In contrast, the reac-
tion of 1-OH with CH2vCH2 is comparatively unfavorable
because of the strong C±O bond.61

Carbenoids XZnCH2X 2-X, X�F, Cl, Br, I, OH

In order to get further insight into the reactions of
carbenoids MCH2X with ole®ns to give cyclopropanes we
also studied the reactions of the zinc carbenoids XZnCH2X
2-X, X�F, Cl, Br, I and OH, with ethene 3. The C±Zn, C±X
and Zn±X bond lengths of 2-X as well as their differences
with respect to the corresponding bonds in H3C±Zn±CH3,
H3C±X and X±Zn±X are summarized in Table 5.

The bond lengths C±ZnX in 2-X are essentially the same as
in Zn(CH3)2, see Table 5. One registers a dependence of the
s-character in the C±ZnX bond of the nature of the X bound
to carbon: the highest s-character in the C±Zn bond is
observed in the case of X�I (sp2.4), while the others are in
the range between sp3.1 and sp3.7.

The C±X bonds in 2-X are only marginally longer (1.4±
2.3%) than in H3C±X. This agrees perfectly with the results
of the solid state structure investigations of Zn-carbenoids.64

It is also signi®cant that the `bond' of the Zn atom to the
leaving group X in 2-X, as compared to the bond length in
X±Zn±X, is exceptionally long because in the most
stable XZn/X carbenoid structures the C±X bonds are not
Zn-bridged. The differences in the Zn±X bond lengths

Table 3. Calculated bond lengths [pm] and bond elongation [%] in the transition states [1-X´3]³, X�F, Cl, Br, I, OH, as compared to the bond lengths of CH3±
Li, CH3±X and Li±X (bond lengths of CH3±Li, CH3±X and Li±X, see Table 1. Since the geometries of LiCH2X 1-X have not much changed in the complexes
[1-X´3] (see Appendix) we refer the transition state geometries of [1-X´3]³, as those of 1-X, see Table 1, to CH3±Li, CH3±X and Li±X)

C±Li C±X Li±X

[1-X´3]³ r [pm] Elong. [%] Hybr. C1 r [pm] Elong. [%] Hybr. C1 r [pm] Elong. [%]

[1-F´3]³ 199.7 0.8 sp1.3 192.8 39.0 p 167.9 5.3
[1-Cl´3]³ 200.6 1.2 sp1.2 233.2 31.4 p 212.5 4.6
[1-Br´3]³ 200.8 1.3 sp1.2 246.5 27.3 p 227.9 4.3
[1-I´3]³ 201.0 1.4 sp1.2 265.9 23.8 p 250.9 4.1
[1-OH´3]³ 202.4 2.1 sp1.4 193.7 36.3 p 167.6 4.6

Table 4. Bond (dissociation) energies (kcal/mol) of the reactions 1±3, see
Scheme 5

Reaction

1-X (1) (2) (3)

1-F 194.8 183.1 11.7
1-Cl 170.1 154.8 15.2
1-Br 164.1 147.5 16.6
1-I 156.3 137.3 19.0
1-OH 217.9 189.2 28.7

Scheme 5. Model reactions for the bond cleavage and bond formation steps
of the leaving groups X in the transition states of the cyclopropanation
reactions of 3 with LiCH2X 1-X.
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amount to 56.4% in the case of 2-F, and to 36.2% in the case
of 2-I (see Table 5). The metal assisted ionization of the
C±Hal bond in the case of the zinc carbenoids 2-X is thus
much less pronounced than in the case of the carbenoids
LiCH2X 1-X. The relative energies of the transition states
in the reactions of 2-X with 3 are summarized in Table 6.

The carbenoids 2-X have a much higher transition state
energy for their reactions with 3 than 1-X, compare Tables
2 and 6. There is a further difference to the Li/Hal
carbenoids 1-Hal because in the zinc series 2-Hal the
energies of the transition states [2-Hal´3]³ are clearly a
function of Hal: 2-F 31.9 kcal/mol, 2-Cl 21.4 kcal/mol,
2-Br 19.2 kcal/mol; 2-I 17.0 kcal/mol. The iodine species
2-I with the lowest activation energy are the most widely
used Simmons±Smith reagents.11±14 The reason for the
halide-dependence is evident from a comparison of Tables
1,3,5 and 7.

The carbenoids 2-X (see Table 5) (as similarly in the
complexes [2-X´3], see Appendix and Refs. 35,38) the
C±Zn bond does not cause a noticeable elongation of the
C±X bonds which have to be cleaved in the cyclopropane
forming process. As mentioned above, the C±X bonds in

2-X are only between 1.4 and 2.3% longer than in CH3±X.
This is totally different in the Li-series 1-X, in which case
the C±X elongation, caused by the C±Li bonds, is between
12.3 and 5.5%, see Table 1. Since the C±X bonds in the
transition states of the 2-X (1-X) reactions with ethene 3
(see Tables 7 (3)) are almost equally elongated (F 40.9
(39.0)%; Cl 32.7 (31.4)%; Br 28.9 (27.3)%; I 25.9
(23.8)%; OH 40.4 (36.8)%), the activation energies of the
reactions of 2-X with ethene 3 are higher than of the reac-
tions of 1-X with 3. Furthermore, in the 2-X case, 2-F must
have a higher activaton energy than 2-I because of the very
different bond energies C±F 110.9 kcal/molqC±I
58.2 kcal/mol, which is in perfect agreement with the
already mentioned ®ndings of Wittig.42 The almost equal
activation energies in the 1-X series, in contrast, result from
the stronger elongation of the C±F bond (12.3%) as
compared to the C±I bond (5.5%) in the carbenoids 1-X
and in the complexes [1-X´3].

Conclusions

The reactions of the lithium carbenoids 1-X, X�F, Cl, Br, I
and OH, with ethene 3 to give cyclopropane 41LiX, pro®t
from the weakening of the C±X bonds by the C±Li bonds in
the carbenoids 1-X and in the complexes [1-X´3]. The C±F
bond is more affected than C±I. Since in the transition states
[1-X´3]³ LiHal is strongly decomplexed, the cleavage of the
C±Hal bonds is essentially compensated by the formation of
the Li±Hal bonds. This leads to almost equal activation
energies for the reactions of 1-Hal with 3. The higher
energy for the reaction of 1-OH with ethene 3 to cyclo-
propane 4 results from the high C±OH bond energy. In
the 2-X reactions with ethene 3, the C±ZnX bond causes
almost no elongation of the C±X bonds. This leads to higher

Table 5. Calculated bond lengths [pm] and bond elongation [%] in the carbenoids XZnCH2X 2-X as compared to the bond lengths of CH3±Zn±CH3, CH3±X
and X±Zn±X, respectively

C±Zn C±X Zn±X

2-X r [pm] Elong.a [%] Hybr. C1 r [pm] Elong.b [%] Hybr. C1 r [pm] Elong.c [%]

2-F 192.2 0.1 sp3.4 140.8 1.5 sp3.6 272.8 56.4
2-Cl 191.9 20.1 sp3.2 181.6 2.3 sp3.8 302.4 45.2
2-Br 191.9 20.1 sp3.1 196.4 1.4 sp4.1 313.5 41.3
2-I 192.0 20.1 sp2.4 217.7 1.4 sp5.6 330.2 36.2
2-OH 191.8 20.2 sp3.7 144.1 1.4 sp3.1 270.0 52.5

a Zn(CH3)2 192.1 pm.
b Values of CH3X, see Table 1.
c ZnF2 174.4 pm, ZnCl2 208.3 pm, ZnBr2 221.9 pm, ZnI2 242.5 pm, Zn(OH)2 177.0 pm.

Table 6. Relative energies [kcal/mol] of the complexes [2-X´3], transition
states [2-X´3]³, product complexes [4´ZnX2], and products 41ZnX2, as
compared to the starting materials 2-X13a,b

F Cl Cla Br I OH

[2-X´3] 25.4 ± ± ± ± ±
[2-X´3]³ 31.9 23.2 21.4 19.2 17.0 44.8
[4´ZnX2] 238.9 ± ± ± ± ±
41ZnX2 232.4 240.0 237.2 240.6 240.2 226.9

a Calculated with the all-electron basis set 6-31111G(d,p)45±48

Table 7. Calculated bond lengths [pm] and bond elongation [%] in the transition states [2-X´3]³, X�F, Cl, Br, I, OH, as compared to the bond lengths of H3C±
Zn±CH3, CH3±X and X±Zn±X (bond lengths of H3C±Zn±CH3, CH3±X and X±Zn±X, see Table 5. Since the geometries of XZnCH2X 2-X have not much
changed in the complexes [2-X´3] (see Appendix and Refs. 35,38) we refer the transition state geometries of [2-X´3]³, as those of 2-X, see Table 5, to H3C±Zn±
CH3, CH3±X and X±Zn±X)

C±Zn C±X Zn±X

[2-X´3]³ r [pm] Elong. [%] Hybr. C1 r [pm] Elong. [%] Hybr. C1 r [pm] Elong. [%]

[2-F´3]³ 194.3 1.1 sp1.6 195.4 40.9 p 198.5 13.8
[2-Cl´3]³ 195.2 1.6 sp1.5 235.6 32.7 p 232.6 11.7
[2-Br´3]³ 195.4 1.7 sp1.5 249.6 28.9 p 245.6 10.7
[2-I´3]³ 195.7 1.9 sp1.5 270.3 25.9 p 265.6 9.5
[2-OH´3]³ 200.7 4.5 sp1.6 199.5 40.4 p 191.9 8.4
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activation energies of these reactions, which is in agreement
with experimental observations. The calculations also show
that the compound with X�F (2-F) has a much higher
activation energy than the normally used iodine species
2-I, again in agreement with experiments.
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Appendix

Table A3. Calculated C1±C2 and C1±C3 bond lengths [pm] in the transi-
tion states [1-X´3]³ and [2-X´3]³, X�F, Cl, Br, I, OH

X [1-X´3]³ [2-X´3]³

C1±C2 r [pm] C1±C3 r [pm] C1±C2 r [pm] C1±C3 r [pm]

F 225.5 249.8 225.3 240.5
Cl 227.8 252.1 231.2 249.0
Br 227.2 252.5 230.4 249.8
I 226.8 253.8 229.2 251.2
OH 204.0 243.4 218.6 237.7

Table A2. Calculated bond lengths [pm] and bond elongations [%] in the
complex [2-F´3], as compared to the bond lengths of H3C±Zn±CH3, CH3±F
and F±Zn±F, see Table 5

C±Zn C±X Zn±X

r [pm] Elong. [%] r [pm] Elong. [%] r [pm] Elong. [%]

[2-F´3] 192.5 0.2 140.8 1.5 276.7 58.7

Table A1. Calculated bond lengths [pm] and bond elongations [%] in the complexes [1-X´3], X�F, Cl, Br, I, OH, as compared to the bond lengths of H3C±Li,
CH3±X and Li±X, see Table 1

[1-X´3] C±Li C±X Li±X

r [pm] Elong. [%] r [pm] Elong. [%] r [pm] Elong. [%]

[1-F´3] 193.4 22.4 155.2 11.9 179.8 12.7
[1-Cl´3] 196.3 21.0 192.7 8.6 223.8 10.2
[1-Br´3] 196.9 20.7 206.4 6.6 239.6 9.7
[1-I´3] 196.9 20.7 226.0 5.3 252.2 4.6
[1-OH´3] 195.0 21.6 151.7 6.8 178.6 11.5


